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Abstract Negative density-dependent population regula-
tion in exploitative species is well studied. Positive density-
dependence can arise if exploiters must cooperate to obtain
access to well-defended resources. Most studies, however,
focus on the first type of density-dependence at the expense
of the other. Using a parasitoid-host model, we explored
how positive density-dependence driven by host defenses in
combination with negative density-dependence due to com-
petition for resources impact transient population dynamics.
Inspired by interactions between the mountain pine beetle
and its pine hosts, we formulated a model of enemy-victim
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interactions in discrete-time in which the victim is capa-
ble of deadly self-defense against exploitation. We fitted
the model to data and then analyzed its non-equilibrium
dynamics to determine what conditions promote boom-
bust dynamics. When present together, strong Allee effects
and overcompensating competition for resources among
exploiters can cause their populations to irrupt and then
crash even though many exploitable resources remain.
Accelerating population irruptions followed by precipitous
collapse occur for realistic parameter values of our model
of mountain pine beetle dynamics. Insect dynamics are
often dominated by sudden irruptions and collapses on short
time scales. Population crashes in exploitative species often
happen enigmatically even when exploitable resources are
not depleted. Herein, we argue that strong Allee effects
in combination with overcompensation provide a plausible
explanation for these boom-bust dynamics in some species.

Keywords Allee effect · Bark beetle · Cooperative attack ·
Nicholson-Bailey · Mountain pine beetle · Plant defense

Introduction

Classic models of trophic interactions (Thompson 1924;
Volterra 1928; Nicholson and Bailey 1935) ignore the
potential for exploited species to kill their exploiters in
self-defense. Deadly resistance to exploitation can select
for cooperative attack or exploiter aggregation to overcome
the defenses of victims (Wallin and Raffa 2004). In some
Hymenopteran parasitoids, for example, parasitoid egg mor-
tality initially decreases with increasing numbers of eggs
laid per host (Ikawa and Okabe 1985; Takagi 1985). Thus,
some gregarious parasitoids, typically called superpara-
sites, lay multiple eggs in a host to overwhelm its immune
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defenses (Charnov and Skinner 1984; Takagi 1985). How-
ever, at high superparasite egg densities per host, intraspe-
cific competition within parasitized hosts can increase the
mortality of juvenile superparasites (Takagi 1985).

Original theoretical work on host-parasitoid systems by
Godfray and Hassell (1991) explored how the host’s abil-
ity to encapsulate and kill the eggs and larvae of parasitoids
impacts the dynamics of host-parasitoid systems. Godfray
and Hassell (1991) developed two models of encapsulation.
In their first model, a fraction of hosts were impregnable
and could not be parasitized because they encapsulated
all eggs laid in them by superparasites. In their second
model, the probability that a host was successfully para-
sitized increased with the number of times it encountered an
ovipositing parasitoid. When a certain proportion of hosts
were impregnable, the coexistence equilibrium of super-
parasites and hosts was stabilized. When the probability
of survival of juvenile parasitoids in their host increased
with the number of enemy-victim interactions, variability
in the defensive capability of hosts contributed to stability
of the coexistence equilibrium. Godfray and Hassell (1991)
did not investigate Allee effects (Allee 1931) even though
host defenses are known to generate them in some cases
(Courchamp et al. 2008).

Tree killing bark beetles are in many ways analogous to
Hymenopteran superparasites: the host tree typically dies
as a result of parasitism; beetle superparasites lay many
eggs per tree and numerous female beetles will attack a
single host. Moreover, host defenses undoubtedly impact
population dynamics as tree defense systems are cap-
able of killing and excluding invading beetles (Raffa and
Berryman 1983). As in Hymenopteran superparasites, there
is evidence of within-host intraspecific competition in bark
beetles that may lead to overcompensation (Berryman 1974;
Raffa and Berryman 1983). However, unlike in gregari-
ous Hymenopteran host-parasitoid systems, trees resisting
attack by bark beetles are hypothesized to succumb to attack
only after a critical number of attacks have been surpassed
(Raffa and Berryman 1983; Berryman et al. 1989).

Prior work on the population dynamics of bark bee-
tles has proposed separate models for the population out-
comes of cooperative and competitive dynamics (Berryman
(Berryman 1974), 1979, 1999). These models require expert
opinion to decide at what population density the effects
of cooperation cease and the effects of competition domi-
nate. Moreover, the models of Berryman (1974), Berryman
(1979), and Berryman (1999) are discontinuous at the bee-
tle population density where the cooperation model and the
competition model are joined. Later work on mountain pine
beetles has fitted s-shaped curves to account for low moun-
tain pine beetle attack success at low densities (Heavilin and
Powell 2008), but these models do not relate the s-shape

to a specific host defense attribute or to a specific level
of beetle aggregation. Because Heavilin and Powell (2008)
assumed that trees successfully colonized by the mountain
pine beetle produced a constant number of beetles, they did
not explicitly account for intraspecific competition between
beetle larvae. More recently, Duncan et al. (2015) mod-
eled the mountain pine beetle infestation process using a
Ricker-like model for scramble competition. Scramble com-
petition occurs within species when resource exploitation by
some individuals deprives other individuals, often resulting
in starvation or reduced size or fecundity of resource-limited
individuals (Price et al. 2011; Nicholson 1954). Bark bee-
tle competition for resources under the bark has long been
modeled using scramble competition models similar to the
Ricker model (Berryman 1974; Raffa and Berryman 1983).

Inspired by aggressive bark beetle-host systems, we
developed a mathematical model wherein the host is able
to defend against parasitoid attack and requires a threshold
number of attacks before its defense system fails. Once bee-
tles overcome a host and oviposit under its bark, scramble
competition occurs among beetle progeny within success-
fully colonized hosts. Unlike previous work, the model we
propose does not require that separate cooperation and com-
petition models be joined at a density selected by expert
opinion. We analyzed our model to explore the short-
term population dynamics of populations subject to strong
positive and negative density-dependent feedback.

Methods

Model derivation

Starting from a host-parasitoid model similar to those of
Nicholson and Bailey (1935) and Thompson (1924), we
derive a host-parasitoid model suitable for a superparasite
that must exceed a minimum number of attacks to colo-
nize a host, but which experiences intraspecific scramble
competition among hatchlings within hosts. We consider
the number of attacks per host to be a random variable At ,
which describes the number of attacks per host given the
mean number of attacks per host is at . The probability mass
function for At is

Pr{At = i|at } = f (i; at ), (1)

and the cumulative distribution function for At is

Pr{At ≤ j |at } = F(j ; at ) =
j∑

i=0

f (i; at ). (2)
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If the minimum number of attacks needed to colonize a
host is φ + 1, then a general host-parasitoid model without
intraspecific competition within hosts can be written as

Pt+1 = cNt (1 − F(φ; at )), (3a)

Nt+1 = λNtF (φ; at ), (3b)

where Pt and Nt denote parasitoid and host density in
generation t. The c parameter represents the number of par-
asitoid progeny produced per host and is usually fixed to
one for solitary parasitoids (Hassell 1978) while λ is the
host geometric growth constant. In both the Thompson and
Nicholson-Bailey systems, hosts become infested if they are
attacked once or more (φ = 0). Moreover, in the simplest
version of both models, attacks or eggs are assumed to be
randomly distributed among hosts such that f (i; at ) fol-
lows a Poisson distribution. The assumption of randomly
distributed attacks, however, is not met in many systems
as attacks tend to be clustered on some hosts while others
are unaffected (May 1978). A common way to incorporate
aggregation is to assume that f (i; at ) follows a negative
binomial distribution (May 1978):

f (i; at )=
(

k

k + at

)k
�(k + i)

i!�(k)

(
at

k + at

)i

= NB(i; at , k),

(4)

where k is the aggregation parameter (smaller k corresponds
to higher aggregation), and NB(i; at , k) represents the cor-
responding negative binomial probability mass function.
Therefore,

F(φ; at ) =
φ∑

i=0

NB(i; at , k). (5)

As shown in Appendix A, Eq. 5 can be written without
the summation using the regularized incomplete beta func-
tion (I (k, φ +1, q)) (Pearson 1968). Not having to compute
large sums greatly facilitates model simulation and fitting.
A cumulative density function like Eq. 5 was first used
in the context of mountain pine beetles to model aggrega-
tion thresholds (Burnell 1977) and then was subsequently
adapted for attack thresholds (Krivan et al. 2016). Recently,
a model of the form of Eqs. 3 and 5 that featured a cumula-
tive density function was fitted to spatiotemporal mountain
pine beetle outbreak data by Goodsman et al. (2016).

Because the mountain pine beetle (Dendroctonus pon-
derosae Hopkins) is a herbivorous superparasite that attacks
pine tree hosts, Eq. 3 may be adapted to model mountain
pine beetle dynamics. Several modifications of Eq. 3 are
required, however, for it to be applicable to the mountain
pine beetle system. In this system, attack dynamics occur

at much faster time scales (4–12 years) than the pine tree
regrowth (20–100 years) and so it is reasonable to assume
that λ = 1.

Female beetles initiate attack on potential host trees, but
differ from many Hymenopteran parasitoids in that they
typically only oviposit once tree’s defenses have been over-
whelmed and the tree is killed. Usually, around two thirds
of the mountain pine beetle population in any given year
is female (Amman and Walter 1983). We assume that each
female beetle attacks only one tree. The aggregation mod-
eled by assuming a negative binomial distribution of attacks,
however, is an imperfect representation of the distribution
of mountain pine beetle attacks because the negative bino-
mial distribution with a high level of aggregation (a small
k) implies that many trees in the stand will be attacked only
a few times. In reality, because of the clustered nature of
attacks in space, most trees in a stand are not attacked and
attacks are focused on a small subset of trees (Logan et al.
1998) some of which may receive many more attacks than
others. Thus, an appropriate mean attack density per host is

at = (1/α)(2/3)Pt /Nt , (6)

where α represents the proportion of trees that are attacked
(0 < α ≤ 1).

Host trees are fortified against attacking beetles and
resist by exuding resin or by encapsulating attackers within
lesions. However, if beetles attack at sufficient densities,
they exhaust the hosts resources and the host succumbs to
attack (Lieutier et al. 2009). Thus, to be applicable to the
mountain pine beetle, φ must be much greater than one.
With these modifications, Eq. 3 becomes

Pt+1 = cαNt (1 − F(φ; at )), (7a)

Nt+1 = (1 − α)Nt + αNtF (φ; at ). (7b)

Even when φ is allowed to greatly exceed one, Eq. 7 still
assumes that each successfully colonized host produces c
beetle progeny. Bark beetle offspring are known to suffer
from intraspecific competition while they develop under the
bark of host trees (Raffa and Berryman 1983), so beetle
productivity per tree depends on the density of colonizing
beetles. Raffa and Berryman (1983) provided evidence for
overcompensating negative density-dependence in moun-
tain pine beetles. We model within-tree competition dynam-
ics using a version of the Ricker equation that accounts
for clustering and the higher attack density in successfully
attacked trees. We follow an approach similar to that of Ives
and May (1985) to derive an expression for beetle produc-
tivitiy in the presence of negative density dependence and
aggregation. We assume that if a tree is attacked i times, then
the probability of beetle survival decreases as exp(−μi) =
zi . Thus, if attacks are clustered on trees according to the
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negative binomial distribution and all attacked trees produce
beetles, the average number of beetle offspring produced per
tree is

Pt+1/(αNt ) = c

∞∑

i=0

if (i; at )z
i, (8)

where c is beetle fecundity per attack and the μ parameter
in z = exp(−μ) represents the negative density-dependence
due to larval competition under the bark. Using the negative
probability generating function approach outlined in Ives
and May (1985), we can write Eq. 8 without the summation
as

Pt+1/(αNt )=c

∞∑

i=0

if (i; at )z
i=catz(1+at/k(1−z))−(k+1).

(9)

However, Eq. 9 is the solution for beetle productivity if all
attacked trees produce beetles regardless of how frequently
they were attacked. In our prior models, we assumed that
beetles only reproduce in trees in which the number of
beetle attacks exceeds a threshold (φ). Therefore, beetle pro-
ductivity in trees that they successfully attack is less than
the productivity in Eq. 9:

Pt+1/(αNt ) = c

∞∑

i=φ+1

if (i; at )z
i

= catz(1 + at/k(1 − z))−(k+1)

−c

φ∑

i=0

if (i; at )z
i . (10)

Using Eq. 10, system (7) can be rewritten as follows

Pt+1 = cαNt

⎛

⎝at z(1 + at /k(1 − z))−(k+1) −
φ∑

i=0

if (i; at )z
i

⎞

⎠ , (11a)

Nt+1 =(1 − α)Nt + αNt F (φ; at ). (11b)

Note from Eq. 10 that when izi = 1, Eq. 11a reduces
to Eq. 7a. This formulation accounts for the high level
of competition that juvenile beetles experience in success-
fully attacked trees due to the high attack densities that are
required to overcome host defenses. It, however, assumes
that competition results from random encounters between
juvenile beetles. In reality, beetle competition under the bark
of host trees likely comprises multiple mechanisms includ-
ing larvicide by other competing larvae, competition for
food resources, and the transmission of disease and mites
(Cole 1973).

Data and parameter estimation

Our model of mountain pine beetle dynamics (11) contains
five parameters that need to be estimated (α, c, k, φ, and μ).
The parameter c is the number of offspring that enters the
life stage in which competition occurs (the larval life stage
for mountain pine beetles). An estimate for the number of
larvae per mated pair of mountain pine beetles was obtained
from Goodsman et al. (2012). The estimate comes from
counting the mean number of larval gallery starts per female
(c = 35 offspring(female)−1) in logs that were artificially
infested at constant low densities (see Fig. 3a in Goodsman
et al. (2012)). We estimated the remaining parameters (α, k,
φ, andμ) by fitting Eq. 11 to data collected by Parker (1973)
and Klein et al. (1978). These data record the initial number
of host trees and the number killed by mountain pine bee-
tle in each year of a 7-year mountain pine beetle outbreak
that began in 1966 in Yellowstone National Park (USA). In
addition, Klein et al. (1978) counted attack density as well
as the number of beetle emergence holes in infested trees to
estimate the number of adult flying beetles in each year in
the same study plots.

To fit Eq. 11 to the data given in Klein et al. (1978)
(reproduced in online Appendix B), we divided the param-
eters into two sets. To fit parameters related to host tree
infestation (φ, α, and k), we fitted Eq. 11b to the density
of hosts (Nt=1) in each year as a function of the number of
hosts and emerged beetles in the previous years. We then
estimatedμ by fitting Eq. 11a to the density of emerged bee-
tles in each year (Pt+1) given the density of emerged beetles
and host trees in the previous year. In both cases, we fit-
ted the square root of the right hand sides of Eq. 11a and
b to the square root of the observed data as this normalized
the residuals. All model fitting was done using the standard
nonlinear least squared (nls) function in the free and open
source R software package (Core Team 2015) (Code for
model fitting is available upon request from the authors).

Analysis of dynamics

To analyze the mountain pine beetle host system (11), we
defined as a new variable, the ratio (Rt ) of emerged adult
beetles to susceptible host trees:

Rt = Pt

Nt

. (12)

we then reformulated Eq. 11 into a single difference equa-
tion in terms of Rt :

Rt+1 = cαat z(1 + at /k(1 − z))−(k+1) − cα
∑φ

i=0if (i; at )z
i

1 − α + αF(φ; at )
= g(Rt ),

(13)
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in which at = (1/α)(2/3)Rt . This difference equation
is transcendental and, therefore, difficult or impossible to
solve analytically for its steady states. Instead, we solved
for the non-zero equilibria numerically using the uniroot.all
function in the rootSolve (Soetaert 2009; Soetaert and
Herman 2009) R package.

To compute the stability of equilibria in the ratio state
space, we calculated the derivative of Eq. 13 with respect to
R. By determining the magnitude and sign of this derivative
with respect to R at the equilibria, we were able to compute
their stability. We varied the beetle fecundity (c) and compe-
tition (μ) parameters with all other parameters fixed at the
values estimated using the Klein et al. (1978) data.

The susceptibility of mountain pine beetle populations to
collapse is of interest to managers who may want to push
mountain pine beetle populations toward collapse. We call
mountain pine beetle populations susceptible to collapse if
there is a ratio of beetles to trees (Ra < Rn < Ru) that is
above the Allee threshold (Ra) and below the upper equi-
librium (Ru) but which, nevertheless, guarantees that Rn+1

is below the Allee threshold. Note that in our mountain
pine beetle model, the Allee threshold (Ra) is the stand-
level manifestation of the tree-level attack threshold (φ),
but the two are not equivalent. If the functional composi-
tion of the discrete-time map (g(Rt )) at its maximum value
(M = g(Rmax) = max g) is less than the Allee threshold
(Ra),

g2(M) = g ◦ g(M) < Ra, (14)

then Rmax satisfies the condition for susceptibility to col-
lapse (the circle operator in 16 represents the functional
composition). Therefore, initializing the population with
Rmax will result in the sudden collapse of the mountain pine
beetle population (Fig. 1).

0 Ra Rmax Ru 500

0

500 g
2
(M)

g(M)

M

Fig. 1 Populations that experience strong Allee effects and overcom-
pensating negative density-dependence may be susceptible to sudden
collapse. If the functional composition of the discrete-time map with
itself at M satisfies g2(M) < Ra , then the population is susceptible to
collapse as there is at least one value of R that is greater than the Allee
threshold Ra and less than the upper equilibrium Ru that will lead to
extinction

Error analysis

Prediction error due to uncertainty in model parameter esti-
mates can be computed using error analysis. Our method of
error analysis follows that of Mood (1950) and Pacala et al.
(1996). To propagate error from parameter estimate uncer-
tainty, we sampled from a multivariate normal distribution
with means given by our vector of parameter estimates and
variance and covariance given by the estimated covariance
matrix. We drew 2000 random samples from this multivari-
ate normal distribution and computed model predictions for
each draw using Eq. 13. We were, thus, able to estimate
quantile-based 95 % confidence intervals around model
predictions of Rt+1 as a function of Rt .

Demographic stochasticity

We constructed a version of Eq. 11 with demographic
stochasticity for comparison to the deterministic model. To
construct a stochastic version of Eq. 11, we assume that the
number of beetles produced in the entire stand is a Poisson
random variable (Xt+1) with a mean (xt+1) that is derived
from Eq. 11a and the number of surviving host trees is a
binomial random variable (Yt+1) with a probability of sur-
vival derived from Eq. 11b. Throughout this work, we have
assumed that the number of beetle attacks per tree is a nega-
tive binomial random variable, but we now call this random
variable Zt and write it in terms of Xt and Yt :

Zt ∼ NB((2/3)(1/α)Xt /Yt , k). (15)

Thus, the equations that govern the Poisson number of
beetles in the stand are

Xt+1 ∼ Poiss(xt+1), (16a)

xt+1 = cαYt

⎛

⎝Zt z(1 + Zt /k(1 − z))−(k+1) −
φ∑

i=0

if (i;Zt )z
i

⎞

⎠ , (16b)

and the equations that govern the binomial number of
remaining host trees are

Yt+1 ∼ binom(Yt , psurv), (17a)

psurv = 1 − α + αF(φ;Zt ), (17b)

To iterate a stochastic version of Eq. 11, we initialized the
stochastic model using a mean of R0 and drew a nega-
tive binomial random variable, Z0 according to Eq. 15. We
then computed X1 using Eq. 16 and Y1 using Eq. 17 with
an initial number of hosts set to Y0. Using X1 and Y1, we
drew a new random variable, Z1, from the negative binomial
distribution. This procedure was iterated for 50 generations.
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Results

Model fits

The population dynamics model (11 or equivalently 13) fit-
ted the data well (Fig. 2). The φ parameter estimate (Table 1)
is consistent with the attack threshold used by Powell and
Bentz (2009) and the per capita beetle productivity pre-
dicted by our model (Fig. 2b) is similar to values estimated
from data (Cerezke 1995). The validity of the other param-
eter estimates (α, k, and μ) is more difficult to establish as
they have not previously been quantified.
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Fig. 2 Panel a shows the per capita host tree (Nt ) mortality model
derived from Eq. 11b fitted to data on mountain pine beetle caused tree
mortality as a function of the ratio of emerged beetles to host trees (Rt );
panel b shows the per capita beetle productivity model derived from
Eq. 11a fitted to data on emerged beetles (Pt ) as a function of Rt ; panel
c shows the reduced discrete-time map (13) fitted to observed ratios
of emerged beetles to host trees (Rt and Rt+1). All of the data shown
are from Klein et al. (1978). Parameter estimates obtained by least
squares fitting are in Table 1. Shaded regions represent 95 % confidence
intervals computed using error analysis as described in the text

Table 1 Estimates for the parameters in Eq. 11 obtained by nonlinear
fitting to data from Klein et al. (1978) and from experimental results
of Goodsman et al. (2012)

Parameter Estimate (SE) Units

α 1.52e-1 (6.73e-2)a Unitless

φ 289.32 (142.93) Attacks

k 8.47 (33.50) Unitless

c 35.0b (NA) Offspring(female)−1

μ 4.18e-3 (4.22e-4) (Attacks/host)−1

aThis is the transformed standard error (parameter that was fitted was
δ in α = exp(−δ))
bThis parameter was estimated from Goodsman et al. (2012) for which
estimates of the standard error are unavailable

Dynamical behavior

To understand the population dynamics predicted by Eq. 11
when its parameters are determined by fitting it to the data
of Klein et al. (1978), we can iterate the discrete-time map of
Eqs. 11 and 13 (Fig. 3). The model predicts an accelerating
population explosion followed by a rapid collapse that is
consistent with observations (Fig. 3).

When φ = 289 attacks as estimated using the Klein et al.
(1978) data set, and k = 8.47, but the degree of negative
density-dependence within hosts (μ) and beetle fecundity
(c) are varied over biologically realistic ranges, non-zero
equilibria can disappear (marked as nonexistence in Fig 4a).
Conversely, the zero equilibrium of Eq. 13 always exists,
is always stable, and corresponds to parasitoid collapse.
In parameter ranges where non-zero equilibria existed, we
always observed two (Fig. 4b). The lower non-zero equi-
librium was always unstable when present (Fig. 4b) but the
upper non-zero equilibrium was stable, stable and oscilla-
tory or unstable and oscillating depending on the values of
the c and μ parameters (Fig. 4). Note that the upper non-
zero equilibrium of Eq. 13 is unstable and oscillating in
the majority of the plausible parameter space of c and μ

(Fig. 4a).
For the parameter values estimated using the Klein et al.

(1978) data when k = 8.47, the dynamics of the system (11
or 13) can be classified as susceptible to collapse according
to our criterion (14) (see point C in Fig. 4a). When param-
eter values satisfy this criterion, beetle populations are very
likely to irrupt and then collapse suddenly even when they
initially exceed the Allee threshold as oscillations about
the upper equilibrium in ratio-state space quickly push the
beetle population below its Allee threshold. Dynamics in
the susceptible to collapse region of this parameter space
(Fig. 4a) exhibit violent boom-bust dynamics characterized
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Fig. 3 A demonstration of the use of iteration to forecast the outbreak
dynamics observed by Klein et al. (1978) using the fitted model (11)
with c = 35 offspring(female)−1, φ = 289 attacks, k = 8.4749, and
μ = 0.00418 (attacks/host)−1, and α = 0.152. Panel a shows one step
ahead forecasting using model (13) for the ratio of emerged beetles
to host trees (Rt ). Panel b shows one step ahead forecasting using the
model (11a) for emerged beetles (Pt ). Panel c shows one step ahead
forecasting for the model (11b) for susceptible host trees (Nt ). The
outbreak collapses before all susceptible host trees are killed

by irruption followed by sudden collapse in the space of 5
or 6 years.
As mountain pine beetle fecundity increases, a bifurcation
occurs and two non-zero equilibria appear in the ratio state
space of Eq. 13 (Fig. 5a). The lower equilibrium is unstable,
the upper equilibrium is initially stable (Fig. 5a), and the
zero equilibrium is always stable. With further increases in
fecundity, the upper equilibrium in ratio state space exhibits
damped oscillations and then becomes unstable and oscil-
latory (Fig. 5a). However, the interpretation of the stability
of the fixed points of Eq. 13 have a subtle meaning when
translated back to the original system (11). Fixed points
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Fig. 4 Panel a shows analysis of the existence and dynamical behavior
of the higher equilibrium in ratio state space of Eq. 13 with k = 8.47,
φ = 289 attacks, and α = 0.152 when negative density-dependence
(μ) and beetle fecundity (c) are varied. Note that equilibria in ratio
state space do not imply equilibria in the original state space of the
model (11). When beetle populations are susceptible to collapse, the
upper equilibrium is oscillatory and unstable and condition (14) in
the text is satisfied. The point C corresponds to the parameter esti-
mates based on the data of Klein et al. (1978) in Table 1 with 95 %
CI shown. In panel b, example discrete-time maps from the parameter
space shown in the preceding figure are plotted. The upper equilib-
rium can be stable (map A), stable with dampening oscillations (map
B), or unstable and oscillating (map C). For discrete-time map A,
c = 15 offspring(female)−1 and μ = 0.0051 (attacks/host)−1. For
discrete-time map B, c = 20 offspring(female)−1 and μ = 0.005
(attacks/host)−1

in the ratio state-space of Eq. 13 are lines and not points
in the phase-plane of Eq. 11. Thus, the system exhibits a
unique bistability, in which even when beetles are above the
Allee threshold, they eventually go extinct as they deplete
their supply of hosts (Fig. 5b). Note that the simultane-
ous extinction of hosts and beetles is a unique feature of
our ratio-dependent formulation that differs from the orig-
inal Nicholson-Bailey model in which parasitoids drive
their host populations down and then go extinct, permit-
ting a subsequent population explosion of hosts. As fecun-
dity increases, the dynamics of the system transition from
damped to unstable oscillations about the upper equilibrium
in the phase-plane (Fig. 5c–d). These unstable oscillations
generate transient population irruptions followed by rapid
population collapses as beetle populations fall into the Allee
trap. Note that the original system (Eq. 11) has no non-zero
equilibria and that the non-zero equilibria in the ratio state
space of (13) do not correspond to non-zero equilibria in the
original state space of Eq. 11.
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Fig. 5 The dynamics of Eq. 11 with φ = 289 attacks, α = 0.152,
k = 8.4749, and μ = 0.00418 (attacks/host)−1 can be analyzed
when fecundity (c) varies using a bifurcation diagram as shown in
panel a. The unusual dynamics of Eq. 11 or equivalently Eq. 13
can be better understood using phase-plane diagrams in which gray
lines with open circles represent model trajectories. In panel b,
the phase-plane diagram for the parameter values listed above and
c = 10 offspring(female)−1 exhibits bistability with beetles going
extinct if they are below the Allee threshold of Eq. 13 (dashed line).

When fecundity is higher (c = 17 offspring(female)−1), the trajectory
of systems initialized above the Allee threshold exhibit damped oscil-
lations around the upper equilibrium (solid line) as shown in panel c.
When c = 35 offspring(female)−1 andμ = 0.0033 (attacks/host)−1 , both
non-zero equilibria are unstable (dashed lines) and trajectories that
are initialized above the Allee threshold oscillate erratically around
the upper equilibrium until pushed below the Allee threshold (lower
dashed line) as shown in panel d

Demographic stochasticity

For simulations in which the upper equilibrium is unstable,
as in point C in Fig. 4a–b, deterministic and stochastic sim-
ulations are generally quite similar. When μ = 0.00418
(attacks/host)−1 deterministic and stochastic dynamics in
ratio space both appear chaotic (Fig. 6a–e). When we
increased density dependence by decreasing μ to μ =
0.0033 (attacks/host)−1, which is the lower bounds of our
95 % confidence interval on the parameter estimate, boom-
bust dynamics became apparent and stochastic dynamics
were often indistiguishable from deterministic dynamics
(Fig. 6f–j). Note that when μ = 0.0033 (attacks/host)−1 and
c = 35 offspring (female)−1, our criterion for susceptiblity
to collapse (14) is satisfied.

Discussion

Strong Allee effects in combination with overcompensating
negative density-dependence can generate dramatic boom-
bust dynamics in exploiter populations. That oscillating
dynamics can drive populations below their Allee thresh-
olds was anticipated by Schreiber (2003) for single species
models with Allee effects and negative density dependence.
In this paper, we provide empirical and theoretical support
for the existence of such dynamics in the mountain pine
beetle system. Unlike the models proposed and analyzed in
Schreiber (2003), where the Allee effect and competition
depend on the density of individuals in the population, our
model has these features in the ratios of attackers (beetles)
to hosts (trees). This leads to complex dynamics of the form
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Fig. 6 A comparison of the
dynamics of deterministic and
stochastic versions of (11) or
equivalently (13). Deterministic
dynamics for two slightly
different parameter sets are
shown in the top row (panels a
and f). Stochastic runs in panels
b–e have the same parameters as
the deterministic model run in
panel a and stochastic runs in
panels g–j share parameter
values with the deterministic
model run in panel f. In all
model runs k = 8.4749,
φ = 289 attacks, α = 0.152,
and c = 35 offspring(female)−1.
In all simulations in the left
column μ = 0.00418
(attacks/host)−1, whereas in all
simulations in the right column
μ = 0.0033 (attacks/host)−1.
The value shown on the vertical
axes in all cases is the ratio of
beetles to host trees
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shown in Fig. 5, where even a stable equilibrium in the ratio
of attackers to hosts can lead to the eventual extinction of
both. Although the asymptotic dynamics of the model may
lead to some unrealistic predictions as host densities dimin-
ish, the transient dynamics of the model in the short term can
generate booms and busts that are frequently observed in
mountain pine beetle populations. The mountain pine beetle
is subject to both positive and negative density-dependence
of the type required for these irruptive dynamics.

Our argument for the importance of overcompensat-
ing negative density-dependence as a driver of boom-bust
dynamics in this system does not negate the significance
of winter beetle mortality in mountain pine beetle popu-
lation crashes. Instead, we contend that in addition to the
negative impacts of extreme cold, host depletion results in
more beetles inhabiting fewer host trees—a scenario with
potentially deleterious consequences for the mountain pine
beetle. In fact, cold-weather events that increase moun-
tain pine beetle mortality may interact with positive and
negative density-dependent drivers of population dynam-
ics. Specifically, stochastic cold-weather events could force
populations below their Allee threshold, leading to a switch
from an epidemic to an endemic regime where beetle
populations are all but invisible. Such interactions bet-
ween stochastic external drivers and endogenous unstable

thresholds can produce regime shifts due to alternate attrac-
tors (Heavilin and Powell 2008; Martinson et al. 2013).
Alternatively, extreme warm events that lead to high beetle
overwinter survival could destabilize populations leading to
oscillations that quickly result in extinction when they force
beetle populations below the Allee threshold.

Many herbivorous forest insect populations outbreak and
then collapse before all susceptible hosts trees are infested
or exploited (Cooke and Lorenzetti 2006; Kausrud et al.
2012). As we consider the mountain pine beetle to be a par-
asitoid, such a collapse could be considered an instance of
the biological control paradox (Arditi and Berryman 1991).
The paradox of biological control in the original Nicholson-
Bailey model arises because efficient parasitoids deplete
their hosts, precipitating their own extinction followed by an
explosion of the unchecked host population. As parasitoid
extinction is inevitable in the original Nicholson-Bailey
model, ecologists have endeavored to stabilize the coex-
istence equilibrium in subsequent host-parasitoid models
(Mills and Getz 1996).

For many forest insect systems, including the mountain
pine beetle system, instability of the coexistence equilib-
rium may be more realistic than stable coexistence. More-
over, unlike in traditional host-parasitoid models, host tree
populations in forest ecosystems do not appear to grow
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geometrically when their exploiters go locally extinct
because the time scale of insect attack is much shorter
than the time scale of host reproduction. In this scenario,
transient or non-equilibrium dynamics are more relevant
than asymptotic dynamics (Hastings 2004). Dynamics that
require hundreds of years to stabilize are overshadowed
by the effects of regularly returning forest fires in pine
systems. Therefore, dramatic transient changes to forests
that occur over 5 or 6 years are more interesting and rel-
evant to ecologists and forest managers than equilibrium
predictions.

Our formulation of the mountain pine beetle host-
parasitoid model is unique in that it allows us to analyze
non-equilibrium dynamics using techniques conventionally
used for the analysis of asymptotic dynamics. In fact, our
original system (11) has no non-zero equilibria. However,
by analyzing equilibria in ratio state space of Eq. 13 we are
able to gain insight into the transient dynamics of Eq. 11.
This was not planned during the derivation of our mod-
els. Instead, we drew inspiration from the host-parasitoid
model of Thompson (1924). Models in which dynamics
depend on the ratios of enemies to victims are relatively
rare, but Crofton (1971) and May (1977) constructed mod-
els in which host mortality was a function of the ratio of
parasites to hosts. The models of Crofton (1971) and May
(1977), however, are fundamentally different from our own
model because a host’s death in their models results in the
death of its internal parasites. In our models, and in those of
Thompson (1924), Crofton (1971), and May (1977), enemy
victim ratios increase without bounds as the density of vic-
tims becomes small. Thus, the use of ratios of enemies to
victims in models can lead to unrealistic predictions. In our
models, especially in their stochastic versions, this is of less
concern because beetle populations generally collapse due
to negative density dependence before they drive their hosts
extinct. However, more complex and process-based repre-
sentations of the beetle’s interaction with its host do not
rely on enemy victim ratios (White and Powell 1997; Logan
et al. 1998).

Dynamical mountain pine beetle models fall on a com-
plexity continuum. The most realistic of these are spatially
explicit and account for beetle flight in an environment of
diffusing host kairomones and attractive and repulsive bee-
tle pheromones (White and Powell 1997; Logan et al. 1998;
Strohm et al. 2013). We admit that more realisitic mod-
els such as those of White and Powell (1997) and Logan
et al. (1998) are likely to provide better predictions over
a wider range of conditions than models such as our own.
Another limitation of relatively simple difference equation-
based models like ours is that incorporating more realistic
representations of the phenology of attacking insects is
difficult because most biological difference equation mod-
els implicitly assume that organisms reproduce and mature

in perfect synchrony. Imperfect synchrony, in the form of
phenological variability, can have a profound impact on
insect dynamics (Logan et al. 1998). However, the pri-
mary motivation behind our model of mountain pine beetle
dynamics was to provoke and demonstrate that the interac-
tion of positive and negative density-dependence may drive
some of the boom-bust dynamics that we observe in popu-
lations of mountain pine beetles and other outbreak insects.
Although it is relatively simple, the model we have pro-
posed has much richer dynamics than other simple mountain
pine beetle models featuring Allee thresholds. For example,
the Allee threshold model of Heavilin and Powell (2008)
is only capable of representing bistability in which beetle
populations irrupt if they are above their Allee threshold
and collapse if they are below it. Our model, although also
simple, can exhibit transient oscillations in beetle popula-
tions that can either remain above the Allee threshold or can
oscillate erratically until they fall below it.

The dynamics of laboratory populations of flour bee-
tles (Tribolium castaneum Herbst) have been shown to
coincide with the predictions of deterministic models sim-
ilar to the one we use in this study (Dennis et al. 1995;
Constantino et al. 1995; Dennis et al. 1997; Dennis et al.
2001). Subsequent studies, however, have highlighted some
important differences between the dynamics of determinis-
tic nonlinear population models and their stochastic analogs
in which state variables are restricted to discrete values
(Henson et al. 2001). Specifically, the addition of stochastic-
ity and discrete-valued state variables can cause trajectories
to alternate between different dynamical regimes expected
in deterministic models (Henson et al. 2001). For example,
a discrete valued stochastic model of the Tribolium sys-
tem alternates between chaos and a six point cycle as do
laboratory populations when their rates are appropriately
manipulated (Henson et al. 2001). Based on these find-
ings, it is natural to expect that the addition of demographic
stochasticity might alter the dynamics that we predicted
in our deterministic analysis. In our numerical study of
stochastic versions of our host-parasitoid model, however,
we found that when the upper equilibrium is unstable and
oscillating, the deterministic and stochastic models exhibit
very similar dynamics—especially when populations meet
the criteria for susceptibility to collapse (14). The dynamics
of deterministic and stochastic versions of our model do dif-
fer when the upper equilibrium of the deterministic model
in ratio-space is stable and oscillating or unstable and oscil-
lating: Whereas the deterministic model predicts persistence
of beetles and their host trees, the stochastic model predicts
a beetle outbreak that lasts 10–40 generations before even-
tually collapsing. Stochastic variability around the upper
equilibrium drives this dynamic by eventually pushing the
population below its Allee threshold, thereby leading to col-
lapse. Thus, in stochastic sytems, even when the population
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gravitates toward a stable equilibrium, the presence of an
Allee threshold can result in sudden crashes that are not
predicted in deterministic systems.

In the system we have studied, parasitoids are not evenly
or randomly distributed among potential hosts, however,
and the aggregation parameter of the negative binomial dis-
tribution for the number of attacks allows some hosts to be
attacked many times while the majority are attacked very
few times or not at all. An implicit assumption in our mod-
els is that the level of aggregation remains constant over
the outbreak period. Although this assumption facilitates
model fitting, in reality, it is advantageous for organisms
subject to positive and negative density-dependence to mod-
ulate aggregation to maximize positive density-dependent
effects while minimizing negative density dependence as
their density changes (Ives 1992; Rohani et al. 1994). In tree
killing bark-beetles, for example, aggregation pheromones
are produced by attacking beetles in order to attract a suf-
ficient number of conspecifics to overcome host defenses
(Conn et al. 1983). Once a tree succumbs to attack, anti-
aggregation pheromones are released and conspecifics will
move into surrounding host trees that are less crowded
(Lindgren and Miller 2002). Because of this mechanism,
small mountain pine beetle populations focus their attack on
only one or two trees, whereas large populations may attack
most of the susceptible host trees in a stand (Safranyik and
Carroll 2006).

Capitalizing on strong Allee effects in forest insects to man-
age outbreaks is a popular idea in forest ecology (Liebhold
and Tobin 2008; Tobin et al. 2011). The type of non-
equilibrium dynamics we demonstrate in this work sug-
gest that when strong Allee effects are present, negative
density-dependence might also be exploited by forest man-
agers to hasten outbreak collapse. For example, when
exploiter populations are high, removing some of their
potential host trees may force overcrowding in the remain-
ing hosts which could lead to a sudden exploiter population
crash.

Conclusion

That the dynamics of the mountain pine beetle host system
depend on interactions that occur outside the host during the
colonization process as well as on intraspecific competition
inside the host will not be surprising to ecologists. What
is surprising is how oscillating dynamics driven by over-
compensating competition can generate boom-bust transient
dynamics that are not predicted by mountain pine beetle
models that ignore beetle competition. In this work, we have
presented a model that illustrates how interactions between
nonlinear positive and negative feedback that are hallmarks
of insect populations may underlie the boom-bust dynamics
they often exhibit.
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Appendix A: Negative binomial CDF

Here, we provide details that describe how the negative
binomial cumulative distribution function can be written in
terms of a regularized incomplete beta function (I (k, φ +
1, at )). Pearson (1968) showed that Eq. 5 can be rewritten
as

F(φ; at ) = I (k, φ + 1, q), (A.1a)

q = k/(k + at ), (A.1b)

where

I (k, φ + 1, q) = B(k, φ + 1, q)

B(k, φ + 1, 1)
. (A.2)

The numerator in Eq. A.2 is the incomplete beta function

B(k, φ + 1, q) =
∫ q

0
tk−1(1 − t)φdt, (A.3)

and the denominator is the beta function

B(k, φ + 1, 1) =
∫ 1

0
tk−1(1 − t)φdt. (A.4)

Thus, the general host-parasitoid equation (3) can be rewrit-
ten as

Pt+1 = cNt (1 − I (k, φ + 1, q)), (A.5a)

Nt+1 = λNt I (k, φ + 1, q), (A.5b)

q = k/(k + at ), (A.5c)

under the assumption that attacks are negative binomially
distributed among hosts and an attack threshold of φ attacks
must be exceeded for hosts to become exploitable.

Similarly, Eq 11 can be rewritten as

Pt+1 = cαNt

(
at z(1 + at /k(1 − z))−(k+1) −

φ∑

i=0

if (i; at )z
i

)
, (A.6a)

Nt+1 = (1 − α)Nt + αNt I (k, φ + 1, q). (A.6b)

q = k/(k + at ), (A.6c)

at = (1/α)(2/3)Pt /Nt , (A.6d)
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and the corresponding discrete time map in ratio state space
(13) can be written

Rt+1 = cα(at z(1 + at /k(1 − z))−(k+1) − ∑φ
i=0 if (i; at )z

i )

(1 − α) + αI (k, φ + 1, q)
, (A.7a)

q = k/(k + at ), (A.7b)

at = (1/α)(2/3)Rt . (A.7c)

Although this notation makes the model slightly less read-
able, it makes it more amenable to fitting to data and
simulation.

Appendix B: Data

Here we supply the data from (Klein et al. 1978) that we
used to fit (11). We were unable to fit all five parame-
ters (c, α, φ, k, and μ) in (11) at the same time with
only five data-points and so we fixed the c parameter to
35 offspring(female)−1, the estimate of the initial number
of larvae produced per female with minimal competition
(Goodsman et al. 2012). All other parameters were fitted to
the (Klein et al. 1978) data.

The number of beetles present in study plots was esti-
mated by (Klein et al. 1978) by counting emergence holes
on successfully attacked trees and multiplying by the den-
sity of attacked trees. These data are expressed in terms of
thousands of emergence holes(acre)−1 in Fig. 4 of (Klein
et al. 1978). Assuming that, on average, one beetle emerges
from each emergence hole, we can estimate the number
of beetles at large per acre in each year. These data were
obtained from Fig. 4 (Klein et al. 1978) using WebPlot-
Digitizer software (http://arohatgi.info/WebPlotDigitizer/).
Because the density of trees that were susceptible to moun-
tain pine beetle attack per acre was also recorded ((Klein
et al. 1978) Table 1), it was simple to compute the ratio
(ratio in table below) of beetles (emerged in table below) to

Table 2 Data from Klein et al. (1978) that were used to fit (11)

Emergence Emerged Hosts stems Ratio

year (1e3)(acre)−1 (acre)−1

1967 7.11 128.40 55.37

1968 10.50 123.30 85.14

1969 25.22 110.10 229.11

1970 25.46 84.80 300.29

1971 2.69 80.70 33.29

1972 0.29 79.10 3.71

The year of emergence, an estimate of the number of emerging beetles
in thousands per acre and an estimate of the density of host trees per
acre are provided. The ratio variable is the density of emerged beetles
divided by the density of host trees. Note that the original raw data
have been rounded to two decimal places

susceptible trees (hosts in table below). Note that the den-
sity of hosts per acre is recorded but the smallest diameter
class (six inch diameter at breast height) listed in Table 1
of (Klein et al. 1978) was not included as six inch diame-
ter at breast height trees were too small to be susceptible to
mountain pine beetle attack.
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